

Portas lógicas

Arquitetura e Organização de Computadores Curso de Análise e Desenvolvimento de Sistemas

Álgebra de Boole

- Vimos anteriormente que os números binários não representam simplesmente números, mas estados (ligado ou desligado) de entradas e saídas em sistemas digitais. A Álgebra de Boole é uma ferramenta matemática importantíssima para que seja possível descrever a relação entre as variáveis de E/S.
- Além de descrever estas relações, a Álgebra Booleana irá nos ajudar a simplificar equações lógicas e consequentemente seus respectivos circuitos eletrônicos.
- Antes de iniciarmos o estudo de operações com números binários, iremos ver alguns conceitos básicos.

Constantes e variáveis

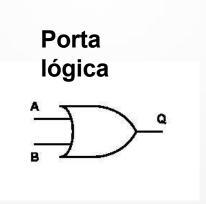
- Trabalhar com números binários é mais simples do que trabalhar com a álgebra convencional, pois só vão existir apenas três operações básicas:
 - Or (Ou) Soma
 - And (E) Multiplicação
 - Not (Não) Inversão
- Em todas estas operações, as variáveis envolvidas só podem assumir dois valores: 0 ou 1.

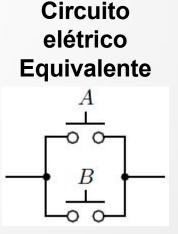
Variáveis de entrada e de saída

- As variáveis podem ser de entrada ou saída:
 - Entrada (Input): Qualquer dispositivo de acionamento como interruptor, botão, sensor, etc... Algebricamente as variáveis de entrada são todas as "letras" envolvidas na equação. Ex:
 - A+B = Q (A e B são variáveis de entrada)
 - Saída (Output): Qualquer dispositivo acionado como motor, lâmpada, alarme, etc... Algebricamente as variáveis de entrada são todas as "letras" envolvidas na equação. Ex:
 - Na equação A+B = Q (Q é uma variável de saída)

Tabela verdade

- É uma ferramenta usada para relacionar o comportamento da saída de acordo com todas as combinações de entradas.
- O número de colunas é a quantidade de entradas mais a quantidade de saídas.
 O número de linhas é 2ⁿ, sendo n o número de variáveis de entrada.
- Ex: Tabela verdade com entradas A e B e saída Q.

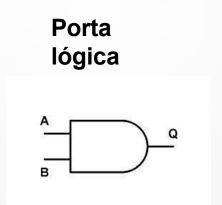

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

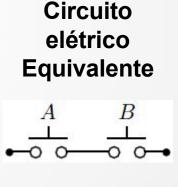


Operações lógicas - OR (OU)

- É representada pelo sinal de "+".
- Diferente da álgebra convencional, na operação OR 1+1 não é igual a 2, mas 1+1=1. Porém na álgebra booleana 1+0 continua sendo 1.
- Logo 1+X vai ser sempre igual a 1. Apenas 0+0 vai ser igual a 0.

Tabela verdade		
Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1





Operações lógicas - AND (E)

- É representada pelo sinal de ".".
- Esta operação é exatamente igual a álgebra convencional.
- Logo 0.X vai ser sempre igual a 0. Apenas 1.1 vai ser igual a 1.

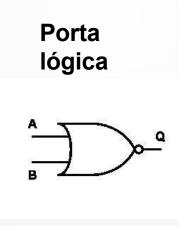
Tabela verdade		
Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1



Operações lógicas - NOT (NÃO)

- É representada pelo sinal de "" acima da letra da variável.
- Esta operação inverte o valor atual da variável.
- Logo 0 passa a ser 1 e 1 passa a ser 0.

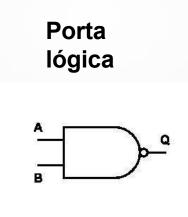
Tabela verdade	
Α	$Q = \overline{A}$
0	1
1	0



Operações lógicas - NOR (NÃO OU)

- É a inversão de uma soma.
- Logo a saída vai ser 1 apenas quando as variáveis estiverem em nível baixo (0).

Tabela verdade		
Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0


Combinação equivalente

Operações lógicas - NOR (NÃO OU)

- É a inversão de uma soma.
- Logo a saída vai ser 0 apenas quando as variáveis estiverem em nível alto (1).

Tabela verdade		
Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Combinação equivalente